the-algorithm/twml/libtwml/src/lib/optim.cpp

275 lines
9.1 KiB
C++
Raw Normal View History

#include "internal/interpolate.h"
#include "internal/error.h"
#include <twml/optim.h>
namespace twml {
template<typename T>
void mdlInfer(Tensor &output_keys, Tensor &output_vals,
const Tensor &input_keys, const Tensor &input_vals,
const Tensor &bin_ids,
const Tensor &bin_vals,
const Tensor &feature_offsets,
bool return_bin_indices) {
auto okeysData = output_keys.getData<int64_t>();
auto ovalsData = output_vals.getData<T>();
uint64_t okeysStride = output_keys.getStride(0);
uint64_t ovaluesStride = output_vals.getStride(0);
auto ikeysData = input_keys.getData<int64_t>();
auto ivalsData = input_vals.getData<T>();
uint64_t ikeysStride = input_keys.getStride(0);
uint64_t ivaluesStride = input_vals.getStride(0);
auto xsData = bin_vals.getData<T>();
auto ysData = bin_ids.getData<int64_t>();
uint64_t xsStride = bin_vals.getStride(0);
uint64_t ysStride = bin_ids.getStride(0);
auto offsetData = feature_offsets.getData<int64_t>();
uint64_t size = input_keys.getDim(0);
uint64_t total_bins = bin_ids.getNumElements();
uint64_t fsize = feature_offsets.getNumElements();
for (uint64_t i = 0; i < size; i++) {
int64_t ikey = ikeysData[i * ikeysStride] - TWML_INDEX_BASE;
T val = ivalsData[i * ivaluesStride];
if (ikey == -1) {
ovalsData[i * ovaluesStride] = val;
continue;
}
// Perform interpolation
uint64_t offset = offsetData[ikey];
uint64_t next_offset = (ikey == (int64_t)(fsize - 1)) ? total_bins : offsetData[ikey + 1];
uint64_t mainSize = next_offset - offset;
const T *lxsData = xsData + offset;
const int64_t *lysData = ysData + offset;
int64_t okey = interpolation<T, int64_t>(lxsData, xsStride,
lysData, ysStride,
val, mainSize, NEAREST, 0,
return_bin_indices);
okeysData[i * okeysStride] = okey + TWML_INDEX_BASE;
ovalsData[i * ovaluesStride] = 1;
}
}
void mdlInfer(Tensor &output_keys, Tensor &output_vals,
const Tensor &input_keys, const Tensor &input_vals,
const Tensor &bin_ids,
const Tensor &bin_vals,
const Tensor &feature_offsets,
bool return_bin_indices) {
if (input_keys.getType() != TWML_TYPE_INT64) {
throw twml::Error(TWML_ERR_TYPE, "input_keys must be a Long Tensor");
}
if (output_keys.getType() != TWML_TYPE_INT64) {
throw twml::Error(TWML_ERR_TYPE, "output_keys must be a Long Tensor");
}
if (bin_ids.getType() != TWML_TYPE_INT64) {
throw twml::Error(TWML_ERR_TYPE, "bin_ids must be a Long Tensor");
}
if (feature_offsets.getType() != TWML_TYPE_INT64) {
throw twml::Error(TWML_ERR_TYPE, "bin_ids must be a Long Tensor");
}
if (input_vals.getType() != bin_vals.getType()) {
throw twml::Error(TWML_ERR_TYPE,
"Data type of input_vals does not match type of bin_vals");
}
if (bin_vals.getNumDims() != 1) {
throw twml::Error(TWML_ERR_SIZE,
"bin_vals must be 1 Dimensional");
}
if (bin_ids.getNumDims() != 1) {
throw twml::Error(TWML_ERR_SIZE,
"bin_ids must be 1 Dimensional");
}
if (bin_vals.getNumElements() != bin_ids.getNumElements()) {
throw twml::Error(TWML_ERR_SIZE,
"Dimensions of bin_vals and bin_ids do not match");
}
if (feature_offsets.getStride(0) != 1) {
throw twml::Error(TWML_ERR_SIZE,
"feature_offsets must be contiguous");
}
switch (input_vals.getType()) {
case TWML_TYPE_FLOAT:
twml::mdlInfer<float>(output_keys, output_vals,
input_keys, input_vals,
bin_ids, bin_vals, feature_offsets,
return_bin_indices);
break;
case TWML_TYPE_DOUBLE:
twml::mdlInfer<double>(output_keys, output_vals,
input_keys, input_vals,
bin_ids, bin_vals, feature_offsets,
return_bin_indices);
break;
default:
throw twml::Error(TWML_ERR_TYPE,
"Unsupported datatype for mdlInfer");
}
}
const int DEFAULT_INTERPOLATION_LOWEST = 0;
/**
* @param output tensor to hold linear or nearest interpolation output.
* This function does not allocate space.
* The output tensor must have space allcoated.
* @param input input tensor; size must match output.
* input is assumed to have size [batch_size, number_of_labels].
* @param xs the bins.
* @param ys the values for the bins.
* @param mode: linear or nearest InterpolationMode.
* linear is used for isotonic calibration.
* nearest is used for MDL calibration and MDL inference.
*
* @return Returns nothing. Output is stored into the output tensor.
*
* This is used by IsotonicCalibration inference.
*/
template <typename T>
void interpolation(
Tensor output,
const Tensor input,
const Tensor xs,
const Tensor ys,
const InterpolationMode mode) {
// Sanity check: input and output should have two dims.
if (input.getNumDims() != 2 || output.getNumDims() != 2) {
throw twml::Error(TWML_ERR_TYPE,
"input and output should have 2 dimensions.");
}
// Sanity check: input and output size should match.
for (int i = 0; i < input.getNumDims(); i++) {
if (input.getDim(i) != output.getDim(i)) {
throw twml::Error(TWML_ERR_TYPE,
"input and output mismatch in size.");
}
}
// Sanity check: number of labels in input should match
// number of labels in xs / ys.
if (input.getDim(1) != xs.getDim(0)
|| input.getDim(1) != ys.getDim(0)) {
throw twml::Error(TWML_ERR_TYPE,
"input, xs, ys should have the same number of labels.");
}
const uint64_t inputStride0 = input.getStride(0);
const uint64_t inputStride1 = input.getStride(1);
const uint64_t outputStride0 = output.getStride(0);
const uint64_t outputStride1 = output.getStride(1);
const uint64_t xsStride0 = xs.getStride(0);
const uint64_t xsStride1 = xs.getStride(1);
const uint64_t ysStride0 = ys.getStride(0);
const uint64_t ysStride1 = ys.getStride(1);
const uint64_t mainSize = xs.getDim(1);
// for each value in the input matrix, compute output value by
// calling interpolation.
auto inputData = input.getData<T>();
auto outputData = output.getData<T>();
auto xsData = xs.getData<T>();
auto ysData = ys.getData<T>();
for (uint64_t i = 0; i < input.getDim(0); i++) {
for (uint64_t j = 0; j < input.getDim(1); j++) {
const T val = inputData[i * inputStride0 + j * inputStride1];
const T *lxsData = xsData + j * xsStride0;
const T *lysData = ysData + j * ysStride0;
const T res = interpolation(
lxsData, xsStride1,
lysData, ysStride1,
val,
mainSize,
mode,
DEFAULT_INTERPOLATION_LOWEST);
outputData[i * outputStride0 + j * outputStride1] = res;
}
}
}
void linearInterpolation(
Tensor output,
const Tensor input,
const Tensor xs,
const Tensor ys) {
switch (input.getType()) {
case TWML_TYPE_FLOAT:
twml::interpolation<float>(output, input, xs, ys, LINEAR);
break;
case TWML_TYPE_DOUBLE:
twml::interpolation<double>(output, input, xs, ys, LINEAR);
break;
default:
throw twml::Error(TWML_ERR_TYPE,
"Unsupported datatype for linearInterpolation.");
}
}
void nearestInterpolation(
Tensor output,
const Tensor input,
const Tensor xs,
const Tensor ys) {
switch (input.getType()) {
case TWML_TYPE_FLOAT:
twml::interpolation<float>(output, input, xs, ys, NEAREST);
break;
case TWML_TYPE_DOUBLE:
twml::interpolation<double>(output, input, xs, ys, NEAREST);
break;
default:
throw twml::Error(TWML_ERR_TYPE,
"Unsupported datatype for nearestInterpolation.");
}
}
} // namespace twml
twml_err twml_optim_mdl_infer(twml_tensor output_keys,
twml_tensor output_vals,
const twml_tensor input_keys,
const twml_tensor input_vals,
const twml_tensor bin_ids,
const twml_tensor bin_vals,
const twml_tensor feature_offsets,
bool return_bin_indices) {
HANDLE_EXCEPTIONS(
using namespace twml;
mdlInfer(*getTensor(output_keys),
*getTensor(output_vals),
*getConstTensor(input_keys),
*getConstTensor(input_vals),
*getConstTensor(bin_ids),
*getConstTensor(bin_vals),
*getConstTensor(feature_offsets),
return_bin_indices););
return TWML_ERR_NONE;
}
twml_err twml_optim_nearest_interpolation(
twml_tensor output,
const twml_tensor input,
const twml_tensor xs,
const twml_tensor ys) {
HANDLE_EXCEPTIONS(
using namespace twml;
nearestInterpolation(*getTensor(output),
*getConstTensor(input),
*getConstTensor(xs),
*getConstTensor(ys)););
return TWML_ERR_NONE;
}