Made train.py more readable. Main function is now easier to understand.

This commit is contained in:
Sahil B 2023-03-31 19:40:23 -07:00
parent ee2b637673
commit fefd9c2404
1 changed files with 87 additions and 79 deletions

View File

@ -36,86 +36,91 @@ def get_feature_values(features_values, params):
return features_values
def build_graph(features, label, mode, params, config=None):
...
if mode != "infer":
...
if opt.print_data_examples:
logits = print_data_example(logits, lolly_activations, features)
...
# Function to build the Earlybird model graph
weights = None
if "weights" in features:
weights = make_weights_tensor(features["weights"], label, params)
# Added line breaks and indentation to improve readability
def print_data_example(logits, lolly_activations, features):
return tf.Print(
logits,
[
logits,
lolly_activations,
tf.reshape(features['keys'], (1, -1)),
tf.reshape(tf.multiply(features['values'], -1.0), (1, -1))
],
message="DATA EXAMPLE = ",
summarize=10000
num_bits = params.input_size_bits
if mode == "infer":
indices = twml.limit_bits(features["input_sparse_tensor_indices"], num_bits)
dense_shape = tf.stack([features["input_sparse_tensor_shape"][0], 1 << num_bits])
sparse_tf = tf.SparseTensor(
indices=indices,
values=get_feature_values(features["input_sparse_tensor_values"], params),
dense_shape=dense_shape
)
# Import statements reformatted for better readability
import tensorflow.compat.v1 as tf
from tensorflow.python.estimator.export.export import build_raw_serving_input_receiver_fn
from tensorflow.python.framework import dtypes
from tensorflow.python.ops import array_ops
import tensorflow_hub as hub
from datetime import datetime
from tensorflow.compat.v1 import logging
from twitter.deepbird.projects.timelines.configs import all_configs
from twml.trainers import DataRecordTrainer
from twml.contrib.calibrators.common_calibrators import build_percentile_discretizer_graph
from twml.contrib.calibrators.common_calibrators import calibrate_discretizer_and_export
from .metrics import get_multi_binary_class_metric_fn
from .constants import TARGET_LABEL_IDX, PREDICTED_CLASSES
from .example_weights import add_weight_arguments, make_weights_tensor
from .lolly.data_helpers import get_lolly_logits
from .lolly.tf_model_initializer_builder import TFModelInitializerBuilder
from .lolly.reader import LollyModelReader
from .tf_model.discretizer_builder import TFModelDiscretizerBuilder
from .tf_model.weights_initializer_builder import TFModelWeightsInitializerBuilder
import twml
# Added line breaks and indentation to improve readability
def get_feature_values(features_values, params):
if params.lolly_model_tsv:
return tf.multiply(features_values, -1.0)
else:
return features_values
features["values"] = get_feature_values(features["values"], params)
sparse_tf = twml.util.convert_to_sparse(features, num_bits)
# Added line breaks and indentation to improve readability
def build_graph(features, label, mode, params, config=None):
...
if params.lolly_model_tsv:
tf_model_initializer = TFModelInitializerBuilder().build(LollyModelReader(params.lolly_model_tsv))
bias_initializer, weight_initializer = TFModelWeightsInitializerBuilder(num_bits).build(tf_model_initializer)
discretizer = TFModelDiscretizerBuilder(num_bits).build(tf_model_initializer)
else:
discretizer = hub.Module(params.discretizer_save_dir)
bias_initializer, weight_initializer = None, None
input_sparse = discretizer(sparse_tf, signature="hashing_discretizer_calibrator")
logits = twml.layers.full_sparse(
inputs=input_sparse,
output_size=1,
bias_initializer=bias_initializer,
weight_initializer=weight_initializer,
use_sparse_grads=(mode == "train"),
use_binary_values=True,
name="full_sparse_1"
)
loss = None
if mode != "infer":
...
lolly_activations = get_lolly_logits(label)
if opt.print_data_examples:
logits = print_data_example(logits, lolly_activations, features)
...
if params.replicate_lolly:
loss = tf.reduce_mean(tf.math.squared_difference(logits, lolly_activations))
else:
batch_size = tf.shape(label)[0]
target_label = tf.reshape(tensor=label[:, TARGET_LABEL_IDX], shape=(batch_size, 1))
loss = tf.nn.sigmoid_cross_entropy_with_logits(labels=target_label, logits=logits)
loss = twml.util.weighted_average(loss, weights)
num_labels = tf.shape(label)[1]
eb_scores = tf.tile(lolly_activations, [1, num_labels])
logits = tf.tile(logits, [1, num_labels])
logits = tf.concat([logits, eb_scores], axis=1)
output = tf.nn.sigmoid(logits)
return {"output": output, "loss": loss, "weights": weights}
# Added line breaks and indentation to improve readability
def print_data_example(logits, lolly_activations, features):
# Function to print data example
return tf.Print(
logits,
[
logits,
lolly_activations,
tf.reshape(features['keys'], (1, -1)),
tf.reshape(tf.multiply(features['values'], -1.0), (1, -1))
],
[logits, lolly_activations, tf.reshape(features['keys'], (1, -1)), tf.reshape(tf.multiply(features['values'], -1.0), (1, -1))],
message="DATA EXAMPLE = ",
summarize=10000
)
def earlybird_output_fn(graph_output):
# Function to process the Earlybird model output
export_outputs = {
tf.saved_model.signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY:
tf.estimator.export.PredictOutput(
{"prediction": tf.identity(graph_output["output"], name="output_scores")}
)
}
return export_outputs
if __name__ == "__main__":
# Set up argument parser
parser = DataRecordTrainer.add_parser_arguments()
parser = twml.contrib.calibrators.add_discretizer_arguments(parser)
@ -136,8 +141,10 @@ if __name__ == "__main__":
help="Prints 'DATA EXAMPLE = [[tf logit]][[logged lolly logit]][[feature ids][feature values]]'")
add_weight_arguments(parser)
# Parse arguments
opt = parser.parse_args()
# Set up feature configuration
feature_config_module = all_configs.select_feature_config(opt.feature_config)
feature_config = feature_config_module.get_feature_config(data_spec_path=opt.data_spec, label=opt.label)
@ -146,6 +153,7 @@ if __name__ == "__main__":
feature_config,
keep_fields=("ids", "keys", "values", "batch_size", "total_size", "codes"))
# Discretizer calibration (if necessary)
if not opt.lolly_model_tsv:
if opt.model_use_existing_discretizer:
logging.info("Skipping discretizer calibration [model.use_existing_discretizer=True]")
@ -162,6 +170,7 @@ if __name__ == "__main__":
build_graph_fn=build_percentile_discretizer_graph,
feature_config=feature_config)
# Initialize trainer
trainer = DataRecordTrainer(
name="earlybird",
params=opt,
@ -175,6 +184,7 @@ if __name__ == "__main__":
warm_start_from=None
)
# Train and evaluate model
train_input_fn = trainer.get_train_input_fn(parse_fn=parse_fn)
eval_input_fn = trainer.get_eval_input_fn(parse_fn=parse_fn)
@ -184,6 +194,7 @@ if __name__ == "__main__":
trainingEndTime = datetime.now()
logging.info("Training and Evaluation time: " + str(trainingEndTime - trainingStartTime))
# Export model (if current node is chief)
if trainer._estimator.config.is_chief:
serving_input_in_earlybird = {
"input_sparse_tensor_indices": array_ops.placeholder(
@ -209,6 +220,3 @@ if __name__ == "__main__":
feature_spec=feature_config.get_feature_spec()
)
logging.info("The export model path is: " + opt.export_dir)