349 lines
10 KiB
Python
349 lines
10 KiB
Python
from abc import ABC, abstractmethod
|
|
from datetime import date
|
|
from importlib import import_module
|
|
import pickle
|
|
|
|
from toxicity_ml_pipeline.settings.default_settings_tox import (
|
|
CLIENT,
|
|
EXISTING_TASK_VERSIONS,
|
|
GCS_ADDRESS,
|
|
TRAINING_DATA_LOCATION,
|
|
)
|
|
from toxicity_ml_pipeline.utils.helpers import execute_command, execute_query
|
|
from toxicity_ml_pipeline.utils.queries import (
|
|
FULL_QUERY,
|
|
FULL_QUERY_W_TWEET_TYPES,
|
|
PARSER_UDF,
|
|
QUERY_SETTINGS,
|
|
)
|
|
|
|
import numpy as np
|
|
import pandas
|
|
|
|
|
|
class DataframeLoader(ABC):
|
|
|
|
def __init__(self, project):
|
|
self.project = project
|
|
|
|
@abstractmethod
|
|
def produce_query(self):
|
|
pass
|
|
|
|
@abstractmethod
|
|
def load_data(self, test=False):
|
|
pass
|
|
|
|
|
|
class ENLoader(DataframeLoader):
|
|
def __init__(self, project, setting_file):
|
|
super(ENLoader, self).__init__(project=project)
|
|
self.date_begin = setting_file.DATE_BEGIN
|
|
self.date_end = setting_file.DATE_END
|
|
TASK_VERSION = setting_file.TASK_VERSION
|
|
if TASK_VERSION not in EXISTING_TASK_VERSIONS:
|
|
raise ValueError
|
|
self.task_version = TASK_VERSION
|
|
self.query_settings = dict(QUERY_SETTINGS)
|
|
self.full_query = FULL_QUERY
|
|
|
|
def produce_query(self, date_begin, date_end, task_version=None, **keys):
|
|
task_version = self.task_version if task_version is None else task_version
|
|
|
|
if task_version in keys["table"]:
|
|
table_name = keys["table"][task_version]
|
|
print(f"Loading {table_name}")
|
|
|
|
main_query = keys["main"].format(
|
|
table=table_name,
|
|
parser_udf=PARSER_UDF[task_version],
|
|
date_begin=date_begin,
|
|
date_end=date_end,
|
|
)
|
|
|
|
return self.full_query.format(
|
|
main_table_query=main_query, date_begin=date_begin, date_end=date_end
|
|
)
|
|
return ""
|
|
|
|
def _reload(self, test, file_keyword):
|
|
query = f"SELECT * from `{TRAINING_DATA_LOCATION.format(project=self.project)}_{file_keyword}`"
|
|
|
|
if test:
|
|
query += " ORDER BY RAND() LIMIT 1000"
|
|
try:
|
|
df = execute_query(client=CLIENT, query=query)
|
|
except Exception:
|
|
print(
|
|
"Loading from BQ failed, trying to load from GCS. "
|
|
"NB: use this option only for intermediate files, which will be deleted at the end of "
|
|
"the project."
|
|
)
|
|
copy_cmd = f"gsutil cp {GCS_ADDRESS.format(project=self.project)}/training_data/{file_keyword}.pkl ."
|
|
execute_command(copy_cmd)
|
|
try:
|
|
with open(f"{file_keyword}.pkl", "rb") as file:
|
|
df = pickle.load(file)
|
|
except Exception:
|
|
return None
|
|
|
|
if test:
|
|
df = df.sample(frac=1)
|
|
return df.iloc[:1000]
|
|
|
|
return df
|
|
|
|
def load_data(self, test=False, **kwargs):
|
|
if "reload" in kwargs and kwargs["reload"]:
|
|
df = self._reload(test, kwargs["reload"])
|
|
if df is not None and df.shape[0] > 0:
|
|
return df
|
|
|
|
df = None
|
|
query_settings = self.query_settings
|
|
if test:
|
|
query_settings = {"fairness": self.query_settings["fairness"]}
|
|
query_settings["fairness"]["main"] += " LIMIT 500"
|
|
|
|
for table, query_info in query_settings.items():
|
|
curr_query = self.produce_query(
|
|
date_begin=self.date_begin, date_end=self.date_end, **query_info
|
|
)
|
|
if curr_query == "":
|
|
continue
|
|
curr_df = execute_query(client=CLIENT, query=curr_query)
|
|
curr_df["origin"] = table
|
|
df = curr_df if df is None else pandas.concat((df, curr_df))
|
|
|
|
df["loading_date"] = date.today()
|
|
df["date"] = pandas.to_datetime(df.date)
|
|
return df
|
|
|
|
def load_precision_set(
|
|
self, begin_date="...", end_date="...", with_tweet_types=False, task_version=3.5
|
|
):
|
|
if with_tweet_types:
|
|
self.full_query = FULL_QUERY_W_TWEET_TYPES
|
|
|
|
query_settings = self.query_settings
|
|
curr_query = self.produce_query(
|
|
date_begin=begin_date,
|
|
date_end=end_date,
|
|
task_version=task_version,
|
|
**query_settings["precision"],
|
|
)
|
|
curr_df = execute_query(client=CLIENT, query=curr_query)
|
|
|
|
curr_df.rename(columns={"media_url": "media_presence"}, inplace=True)
|
|
return curr_df
|
|
|
|
|
|
class ENLoaderWithSampling(ENLoader):
|
|
|
|
keywords = {
|
|
"politics": [
|
|
...
|
|
],
|
|
"insults": [
|
|
...
|
|
],
|
|
"race": [
|
|
...
|
|
],
|
|
}
|
|
n = ...
|
|
N = ...
|
|
|
|
def __init__(self, project):
|
|
self.raw_loader = ENLoader(project=project)
|
|
if project == ...:
|
|
self.project = project
|
|
else:
|
|
raise ValueError
|
|
|
|
def sample_with_weights(self, df, n):
|
|
w = df["label"].value_counts(normalize=True)[1]
|
|
dist = np.full((df.shape[0],), w)
|
|
sampled_df = df.sample(n=n, weights=dist, replace=False)
|
|
return sampled_df
|
|
|
|
def sample_keywords(self, df, N, group):
|
|
print("\nmatching", group, "keywords...")
|
|
|
|
keyword_list = self.keywords[group]
|
|
match_df = df.loc[df.text.str.lower().str.contains("|".join(keyword_list), regex=True)]
|
|
|
|
print("sampling N/3 from", group)
|
|
if match_df.shape[0] <= N / 3:
|
|
print(
|
|
"WARNING: Sampling only",
|
|
match_df.shape[0],
|
|
"instead of",
|
|
N / 3,
|
|
"examples from race focused tweets due to insufficient data",
|
|
)
|
|
sample_df = match_df
|
|
|
|
else:
|
|
print(
|
|
"sampling",
|
|
group,
|
|
"at",
|
|
round(match_df["label"].value_counts(normalize=True)[1], 3),
|
|
"% action rate",
|
|
)
|
|
sample_df = self.sample_with_weights(match_df, int(N / 3))
|
|
print(sample_df.shape)
|
|
print(sample_df.label.value_counts(normalize=True))
|
|
|
|
print("\nshape of df before dropping sampled rows after", group, "matching..", df.shape[0])
|
|
df = df.loc[
|
|
df.index.difference(sample_df.index),
|
|
]
|
|
print("\nshape of df after dropping sampled rows after", group, "matching..", df.shape[0])
|
|
|
|
return df, sample_df
|
|
|
|
def sample_first_set_helper(self, train_df, first_set, new_n):
|
|
if first_set == "prev":
|
|
fset = train_df.loc[train_df["origin"].isin(["prevalence", "causal prevalence"])]
|
|
print(
|
|
"sampling prev at", round(fset["label"].value_counts(normalize=True)[1], 3), "% action rate"
|
|
)
|
|
else:
|
|
fset = train_df
|
|
|
|
n_fset = self.sample_with_weights(fset, new_n)
|
|
print("len of sampled first set", n_fset.shape[0])
|
|
print(n_fset.label.value_counts(normalize=True))
|
|
|
|
return n_fset
|
|
|
|
def sample(self, df, first_set, second_set, keyword_sampling, n, N):
|
|
train_df = df[df.origin != "precision"]
|
|
val_test_df = df[df.origin == "precision"]
|
|
|
|
print("\nsampling first set of data")
|
|
new_n = n - N if second_set is not None else n
|
|
n_fset = self.sample_first_set_helper(train_df, first_set, new_n)
|
|
|
|
print("\nsampling second set of data")
|
|
train_df = train_df.loc[
|
|
train_df.index.difference(n_fset.index),
|
|
]
|
|
|
|
if second_set is None:
|
|
print("no second set sampling being done")
|
|
df = n_fset.append(val_test_df)
|
|
return df
|
|
|
|
if second_set == "prev":
|
|
sset = train_df.loc[train_df["origin"].isin(["prevalence", "causal prevalence"])]
|
|
|
|
elif second_set == "fdr":
|
|
sset = train_df.loc[train_df["origin"] == "fdr"]
|
|
|
|
else:
|
|
sset = train_df
|
|
|
|
if keyword_sampling == True:
|
|
print("sampling based off of keywords defined...")
|
|
print("second set is", second_set, "with length", sset.shape[0])
|
|
|
|
sset, n_politics = self.sample_keywords(sset, N, "politics")
|
|
sset, n_insults = self.sample_keywords(sset, N, "insults")
|
|
sset, n_race = self.sample_keywords(sset, N, "race")
|
|
|
|
n_sset = n_politics.append([n_insults, n_race])
|
|
print("len of sampled second set", n_sset.shape[0])
|
|
|
|
else:
|
|
print(
|
|
"No keyword sampling. Instead random sampling from",
|
|
second_set,
|
|
"at",
|
|
round(sset["label"].value_counts(normalize=True)[1], 3),
|
|
"% action rate",
|
|
)
|
|
n_sset = self.sample_with_weights(sset, N)
|
|
print("len of sampled second set", n_sset.shape[0])
|
|
print(n_sset.label.value_counts(normalize=True))
|
|
|
|
df = n_fset.append([n_sset, val_test_df])
|
|
df = df.sample(frac=1).reset_index(drop=True)
|
|
|
|
return df
|
|
|
|
def load_data(
|
|
self, first_set="prev", second_set=None, keyword_sampling=False, test=False, **kwargs
|
|
):
|
|
n = kwargs.get("n", self.n)
|
|
N = kwargs.get("N", self.N)
|
|
|
|
df = self.raw_loader.load_data(test=test, **kwargs)
|
|
return self.sample(df, first_set, second_set, keyword_sampling, n, N)
|
|
|
|
|
|
class I18nLoader(DataframeLoader):
|
|
def __init__(self):
|
|
super().__init__(project=...)
|
|
from archive.settings.... import ACCEPTED_LANGUAGES, QUERY_SETTINGS
|
|
|
|
self.accepted_languages = ACCEPTED_LANGUAGES
|
|
self.query_settings = dict(QUERY_SETTINGS)
|
|
|
|
def produce_query(self, language, query, dataset, table, lang):
|
|
query = query.format(dataset=dataset, table=table)
|
|
add_query = f"AND reviewed.{lang}='{language}'"
|
|
query += add_query
|
|
|
|
return query
|
|
|
|
def query_keys(self, language, task=2, size="50"):
|
|
if task == 2:
|
|
if language == "ar":
|
|
self.query_settings["adhoc_v2"]["table"] = "..."
|
|
elif language == "tr":
|
|
self.query_settings["adhoc_v2"]["table"] = "..."
|
|
elif language == "es":
|
|
self.query_settings["adhoc_v2"]["table"] = f"..."
|
|
else:
|
|
self.query_settings["adhoc_v2"]["table"] = "..."
|
|
|
|
return self.query_settings["adhoc_v2"]
|
|
|
|
if task == 3:
|
|
return self.query_settings["adhoc_v3"]
|
|
|
|
raise ValueError(f"There are no other tasks than 2 or 3. {task} does not exist.")
|
|
|
|
def load_data(self, language, test=False, task=2):
|
|
if language not in self.accepted_languages:
|
|
raise ValueError(
|
|
f"Language not in the data {language}. Accepted values are " f"{self.accepted_languages}"
|
|
)
|
|
|
|
print(".... adhoc data")
|
|
key_dict = self.query_keys(language=language, task=task)
|
|
query_adhoc = self.produce_query(language=language, **key_dict)
|
|
if test:
|
|
query_adhoc += " LIMIT 500"
|
|
adhoc_df = execute_query(CLIENT, query_adhoc)
|
|
|
|
if not (test or language == "tr" or task == 3):
|
|
if language == "es":
|
|
print(".... additional adhoc data")
|
|
key_dict = self.query_keys(language=language, size="100")
|
|
query_adhoc = self.produce_query(language=language, **key_dict)
|
|
adhoc_df = pandas.concat(
|
|
(adhoc_df, execute_query(CLIENT, query_adhoc)), axis=0, ignore_index=True
|
|
)
|
|
|
|
print(".... prevalence data")
|
|
query_prev = self.produce_query(language=language, **self.query_settings["prevalence_v2"])
|
|
prev_df = execute_query(CLIENT, query_prev)
|
|
prev_df["description"] = "Prevalence"
|
|
adhoc_df = pandas.concat((adhoc_df, prev_df), axis=0, ignore_index=True)
|
|
|
|
return self.clean(adhoc_df)
|